
SJ GREEN
27TH January 2025

1

Demonstration of the

AWS CLI to Launch a

VPC
Important Preparation: Way before the session begins, and you are

displaying your screen, get the AWS Access Key and Secret Access Key for the

IAM user you intend to use, into position. Paste them in Notepad, in a window. If

you have them in a file on your local computer, then you will have to expose all

your embarrassing filenames to everyone watching.

Note 1 - These instructions are written specifically for a demonstration using

CMD on Windows. When writing out the command to execute, in this article, I

have always used a new line for a parameter. However, generally, with CMD on

Windows you should not do this. Do not have your commands spread across

multiple lines. Instead, simply type one space and then give the name of the

parameter. Two dashes are written before the name of a parameter.

Note 2 – The best demonstrations are the ones where things go wrong. You

want to prove to students that you possess a stable capability to use the

technology. This is why I choose not to record a video of myself and play it – a

video is not real. So, try to relax and model good troubleshooting skills. Usually,

you are four minutes from a solution, and it will be a space character or a comma

or an uppercase letter that should not be there.

Note 3 – Using the AWS CLI on Windows is the kind of activity that it helps

to warm up with. If you have not executed any commands for several months,

then things will be difficult on a first pass. You will type Instanceid instead of

InstanceId and then realise you meant to type ImageId anyhow; you’ll forget

the difference between --filter and --query and countless other minutiae. If

this is the state you are in, then start by reading through this entire article. Then

take a first attempt at the activities, and a second attempt. Give yourself a few

uninterrupted hours to really “get into” it.

SJ GREEN
27TH January 2025

2

Begin by explaining that I will be demonstrating the launch of an

EC2 Instance. If I am to launch an EC2 Instance, then I need to

know the ID for an Amazon Machine Image (AMI). The question

raised is how I can come to have this knowledge.

Execute the following command:

aws ec2 describe-images

This will provide the opportunity to demonstrate a command is

deficient in two respects. First, it takes a long time to provide a

response. Second, the response lacks precision.

Explain that it is still useful to run the command, because we can

learn about the keys in the response. (For example, there is an Images

object, and within it there is an ImageId key and other helpful keys.)

Do not wait for too long. If you get not response, then move on. It

the unrefined command (aws ec2 describe-images) has not provided a

response, then use Ctrl+C to cease waiting for the response. Point

out how, exactly, we know that the command has not yet responded

(we know because there is no prompt displayed). A novice might

worry about how we distinguish a command that is responding, albeit

slowly, from a command that was successful but had no observable

response. Explain, therefore, that this command is responding slowly.

Use a more refined command:

aws ec2 describe-images

--query Images[0:2]

The response from this command is important, because it tells us the

material we have to play with. Explain that we are using an index

expression to only return 2 objects the (0th and 1st). Take a look at all

the keys related to particular images. For example, there is ImageId,

Hypervisor, Name, State,

Execute a more refined command (ensure you look at all the lines of

the command printed below, especially is this text is near to the edge

of a page):

SJ GREEN
27TH January 2025

3

aws ec2 describe-images

--query Images[*].[ImageId, Hypervisor, Name]

You may need to put the value of the query parameter inside speech

marks.

Explore the variety of values for Name. This gives insight into the

various types of Amazon Machine Image there are.

The Need For the Filter Parameter

Explain that in order to prevent the response from being too long, we

really need to be more precise in what we ask for. The --query

parameter does not help us in this regard. It means that we only see

certain keys for each object, but we are still asking for an enormous

number of objects to be returned.

Explain that we will now use this command, to give a first example

of how the --filter parameter works:

aws ec2 describe-images

--query Images[*].[ImageId, Hypervisor, Name, State]

--filter “Name=state,Values=available”

To use the --filter parameter, we provide a Name and some

Values.

Here, we are interested only in images whose state is available.

Even though in the object, the key is “State”, with an initial upper

case letter, we write Name=state. For some reason, the --filter

parameter demands that its names are in all-lowercase.

Here is a second example, using the --filter parameter. This time,

we are only interested in cases where the name begins amzn2-ami-

hvm-*

So, we type:

SJ GREEN
27TH January 2025

4

 aws ec2 describe-images

 --owners amazon

 --filters “Name=name,Values=amzn2-ami-hvm-*”

 --query Images[*].[ImageId,Name]

 --output table

You will notice that we have introduced a few other parameters. We

have used the --owners parameter and the --output parameter.

Sometimes, Windows CMD has a problem if you include a space

character between the Name and Values specification within --

filter.

In other words, this will be unacceptable:

--filters Name=name, Values=amzn2-ami-hvm-*

This, meanwhile, will be acceptable:

--filters Name=name,Values=amzn2-ami-hvm-*

Notice how there is a comma and then an uppercase V, with no

spaces interrupting.

Hopefully, in the output, you see a table. In the table there are

specific AMI IDs. Copy one of the AMI IDs and paste it on Notepad

for later. You will need it when launching an EC2 Instance.

Part 2 – Launching a VPC

We can attempt the following command:

aws ec2 create-default-vpc

You might see the following result:

An error occurred (DefaultVpcAlreadyExists) when calling the

CreateDefaultVpc operation: A Default VPC already exists for

this account in this region.

SJ GREEN
27TH January 2025

5

Discuss why there might already be a VPC in existence.

You might then run this command:

aws ec2 describe-vpcs

 Explore the properties of the VPC. Note down the VPC ID.

Bonus Question: Why do we not see the Region in which this VPC is

situated? The answer is that the AWS CLI is already scoped down to

a specific Region. Consider the aws configure command which

allows you to do this.

We are now building up to executing the following command, but do

not execute the command yet:

aws ec2 launch-instances

 Type the following:

 aws ec2 launch-instances –help

This is an example of being able to type --help after a specific

command.

There are a few things to draw attention to in the response. First, it

should say somewhere:

aws: error: argument operation: Invalid choice, valid choices

are:

This is the AWS CLI trying to provide feedback to us. Specifically, it

is telling us that the command we typed was an invalid choice. It is

correct because there is no such command as launch-instances.
Second, it should say:

Invalid choice: 'launch-instances', maybe you meant:

 * run-instances

SJ GREEN
27TH January 2025

6

This is an example of the AWS CLI providing a suggestion about the

command we may have intended. Now attempt the regular and

rectified run command:

 aws ec2 run-instances

You will be met with the following:

An error occurred (MissingParameter) when calling the

RunInstances operation: The request must contain the parameter

ImageId

Now, let’s think about this for a moment. Presumably, there are lots

of parameters that are required, and not just ImageId. Learning about

each parameter one-by-one, via the response of the AWS CLI is a

tedious way to do things. We might ask: Is there a way to find out all

of the parameters that are required, in a single act?

The answer is that there is. We can execute:

 aws ec2 run-instances --help

I find that the above command returns an error. The word help

should have no dashes in front of it. Execute this instead:

 aws ec2 run-instances help

If you repeatedly press the Enter key on your keyboard, you should

eventually see a list of parameters. Examples include:

 --block-device-mappings

--image-id

--instance-type

--ipv6-address-count

--ipv6-addresses

SJ GREEN
27TH January 2025

7

Some of these parameters will be in square brackets. I have found

that all the parameters are in square brackets. This is some sort of

mistake with the AWS CLI. After all, we know that the --image-id

parameter is required.

It turns out there is a way to discover all the parameters which are

required. You can use --generate-cli-skeleton. This is an

incredibly useful parameter, so please pay attention here. Let’s look at

how the AWS CLI reference describes it:

--generate-cli-skeleton (string) Prints a JSON skeleton to standard output

without sending an API request.

If provided with no value or the value input, prints a sample input JSON that can be

used as an argument for --cli-input-json.

Similarly, if provided yaml-input it will print a sample input YAML that can be used with

--cli-input-yaml. If provided with the value output, it validates the command

inputs and returns a sample output JSON for that command.

The generated JSON skeleton is not stable between versions of the AWS CLI and there

are no backwards compatibility guarantees in the JSON skeleton generated.

So, the AWS CLI provides you with an example of the kind of thing

you might input.

However, the above text is misleading. It states the inclusion of the

parameter “prints a sample input JSON that can be used as an

argument for --cli-input-json.”

This might lead you to believe that you can directly paste the JSON

in, to be the value of --cli-input-json. Well, you are free to

attempt this.

When I attempt this, I get back an error line for each part of the

JSON:

Error parsing parameter 'cli-input-json': Invalid JSON

received.

"BlockDeviceMappings": ['"BlockDeviceMappings":' is not

recognized as an internal or external command, operable

program or batch file.

[…]

An alternative way of doing things is to use the file:// notation.

So, we can include the sample JSON. But we are going to point to it,

rather than paste the JSON in directly.

Do not run this command yet:

SJ GREEN
27TH January 2025

8

aws ec2 run-instances –cli-input-json file://run--

instances.json

Before executing the command, take a look over the file. Specify an

instance type such as t3.medium. Paste in your AMI Id which you

saved to Notepad earlier.

I am told the following:

Parameter validation failed:

Invalid value for parameter

ElasticInferenceAccelerators[0].Count, value: 0, valid min

value: 1

Therefore, I go and specify that we have 1 Elastic Inference

Accelerator.

Now, after running the command again, I am told:

An error occurred (UnknownParameter) when calling the

RunInstances operation: The parameter SpreadDomain is not

recognized

Where does the demand for an Elastic Inference Accelerator come

from? Is it because I’m using a particular AMI or a particular Instance

Type?

This is probably because of the Instance Type.

New Attempt

Let’s suppose we make a new attempt. We just run the following:

aws ec2 run-instances --image-id ami-008524bd0e265fbab --

instance-type t3.micro

So, we have just decided to use two parameters. (I do this because

Ivo Pinto did it on page X of his book AWS Practical Projects.) It

seems we can get away with this.

But we get this error:

An error occurred (InvalidParameterValue) when calling the

RunInstances operation:

The architecture 'x86_64' of the specified instance type does

not match the architecture 'arm64' of the specified AMI.

Specify an instance type and an AMI that have matching

architectures, and try again.

file://///run--instances.json
file://///run--instances.json

SJ GREEN
27TH January 2025

9

You can use 'describe-instance-types' or 'describe-images' to

discover the architecture of the instance type or AMI.

How can we find out the architecture of the AMI we used? I can use

the following command:

aws ec2 describe-images --image-ids ami-008524bd0e265fbab --

query "Images[0].Architecture"

Where the AMI ID provided is the AMI I used. It turns out the AMI

I used employs an ARM64 architecture. A t3.micro instance, on the

other hand, uses an x86_64 architecture.

Ivo Pinto uses ami-0c101f26f147fa7fd on page 15 of his

textbook (“AWS Cloud Projects”)

Unfortunately, this does not work. When I try to launch an instance

using run-instances and specify this AMI and t2.micro I am told:

An error occurred (InvalidAMIID.NotFound) when calling the

RunInstances operation: The image id '[ami-0c101f26f147fa7fd]'

does not exist

So, we cannot cheat! We really have to get on top of this and work

out for ourselves how to find an Amazon Machine Image that is

appropriate.

Properly Selecting an AMI, for Ourselves

Let’s suppose we want to select an AMI. First, we should fix the

instance type we are using. I want to use a simple and cheap one,

because this is just a demonstration.

I can find the instance types available using the AWS CLI (the User

Guide for EC2 gave me this idea):

aws ec2 describe-instance-types --region us-west-2

SJ GREEN
27TH January 2025

10

Notice how I am using the Region parameter to ensure I am looking

at instance types in London. The response is fascinating. For each

instance type, I am told things such as:

• Whether it is FreeTierEligible,

• whether it is the CurrentGeneration,

• the network performance in gigabits (e.g. 37.5 gigabits)

• Whether it supports BareMetal usage

• PlacementGroupInfo tells me whether it supports the cluster placement

strategy or the partition placement strategy or the spread placement strategy

• MemoryInfo tells me the memory in MiB

• Hypervisor tells me the hypervisor used (e.g. Xen)

It is difficult to use this CLI response solely to select an instance type.

This is because you need that knowledge from the documentation

which tells you what t3 means, and what m5 or c5 means.

The EC2 User Guide tells me that General Purpose instances are

found in t3.micro. So I type:

aws ec2 describe-instance-types

--region us-west-2

--instance-types t3.micro

This response to this allows me to fix a few details, in anticipation of

locating an AMI. For example, I can confirm using Hypervisor

that a nitro hypervisor is used, I can confirm using the

FreeTierEligible key that it is not in fact eligible for the free

tier, ProcessorInfo tells me that the manufacturer of the

processor is Intel and that the only supported architecture is x86_64.

This is really important to note. The only supported architecture on

the instance type I intend to use is x86_64. This is a 64-bit

architecture. It is also known as AMD64 or x64.

Selecting an AMI

Now that we have fixed these details related to the instance type, let’s

search through some candidates for our AMI.

We’re going to use aws ec2 describe-images again. But let’s

see what parameters we can use here. Type:

SJ GREEN
27TH January 2025

11

 aws ec2 describe-images help

I try this command:

aws ec2 describe-images

--filters Name=architecture,Values=x86_64

--owners amazon

--page-size 5

--max-items 5

Remember that within --filter it must be Values not Value.

One thing that is disappointing is that my t3.micro has a nitro

hypervisor. Yet I am not able to filter for a nitro hypervisor. The aws

ec2 describe-images command tells me that the only options for

“hypervisor” are “ovm” and “xen”. Well, that is not very helpful.

I cannot select for instances that use a “nitro” hypervisor, it seems.

We probably want to add another thing within our --filter

parameter. How can we do this? Do we need some sort of delimiter

character? The answer is that you can just use a space.

Our next command will be:

aws ec2 describe-images

 --filters Name=architecture,Values=x86_64

 Name=virtualization-type,Values=hvm

 Name=name,Values=amzn2-ami-hvm-*

 Name=ena-support,Values=true

 --owners amazon \

 --query "Images[*].[ImageId,Name,CreationDate]"

 --output table

SJ GREEN
27TH January 2025

12

You should care about the Operating System (OS) on your AMI. For

this reason, we specify that the name of the AMI should begin

“amzn2-ami-hvm-*”.

Bonus question: What else can you spot in the command above?

Please really study the large, multi-line command above. It contains

within it the procedural knowledge for settling upon an AMI to use.

See if you can memorise the four filters.

Is there a way to scroll to the bottom of CMD on Windows? Yes,

practice using Ctrl + End on your keyboard.

You should get a table as the output. Copy and paste an AMI from

the list.

Now attempt to launch an EC2 once again:

aws ec2 run-instances --image-id ami-012a45249baf877bd --

instance-type t3.micro

If the instance launches, you should get a response. The keys includes

might be things such as AmiLaunchIndex, ImageId, InstanceId,

InstanceType, LaunchTime.

Paste the value for InstanceId, the value for VpcId and the value

for SubnetId.

Scroll down to made a note of the security groups on the instance.

Firewalls and the EC2 Instance we have Just Deployed

1 - Security Groups

Run the following command:

aws ec2 describe-security-group-rules

 There should be two rules. Examine the rules.

SJ GREEN
27TH January 2025

13

Explain that one of the rules allows all outbound traffic to any IPv4

address (0.0.0.0/0). The value of -1 for the FromPort key and the

ToPort key effectively means that all ports are allowed.

One of the rules looks like this:

{

 "SecurityGroupRuleId": "sgr-074d8d30ad81d431c",

 "GroupId": "sg-03d882f0e760f199b",

 "GroupOwnerId": "737911634202",

 "IsEgress": false,

 "IpProtocol": "-1",

 "FromPort": -1,

 "ToPort": -1,

 "ReferencedGroupInfo": {

 "GroupId": "sg-03d882f0e760f199b",

 "UserId": "737911634202"

 },

 "Tags": []

 },

Let’s analyse the rule above. It is an ingress rule. We know this

because the value of IsEgress is set to false. We can see that the

value of “IpProtocol” is “-1”. This tells us, perhaps

counterintuitively, that all protocols are allowed.

The value of “FromPort” and “ToPort” is set to -1. This tells us

that this rule applies to all ports.

This rule allows all protocols and all ports to communicate with this

Security Group, but only if the traffic originates from the same

security group. Essentially, this is a self-referencing rule, which allows

instances within the same Security Group to communicate with each

other.

2 - NACLs

You can attempt the following command:

 aws ec2 describe-network-acls

Ask students if there is anything interesting to note about the rules.

3 - Modify the security group

Run this command:

SJ GREEN
27TH January 2025

14

aws ec2 authorize-security-group-ingress

 --group-id sg-1234567890abcdef

 --protocol tcp

 --port 80

 --cidr 0.0.0.0/0

Obviously you should adjust the command, providing the

appropriate value for --group-id.

Verify that a new rule has been created by executing:

aws ec2 describe-security-group-rules

 Create an isolation security group

Execute this command to create a special quarantine SG:

aws ec2 create-security-group

--description Security group for isolating resources.

--group-name isolation-sg

 Now we need to alter its rule to make it restrictive:

aws ec2 revoke-security-group-egress

--group-id sg-03b9ab54cff532500

--protocol tcp

--cidr 0.0.0.0/0

--port 0-65535

We must allow ourselves to access the EC2 Instance in order

to manage it, so we need to allow inbound access from

elsewhere:

 aws ec2 authorize-security-group-ingress

 --group-id

--protocol tcp

--port 22

--cidr 0.0.0.0/0

SJ GREEN
27TH January 2025

15

Now we need to associate our EC2 Instance with this

quarantine SG:

 aws ec2 modify-instance-attributes

 --instance-id <instanceid>

 --groups <id of security group>

4 - Exploring Subnets

Execute this command:

aws ec2 describe-subnets

Ask the question: where is my running EC2 Instance? Which

subnet is it in? How would I find out?

Bonus question: is it possible to move an EC2 Instance from

one subnet to another?

5 - Create a new subnet

6 - Create a distinct VPC

Clean up Operation
You must demonstrate the clean-up operation. It is part of

modelling good practices. It is dangerous to put these steps off

until later, because you might forget.

(1) Terminate the EC2 Instance

Execute this command:

aws ec2 terminate-instances --instance-id <instance-id>

(2) Deleting the security groups

(3) Clean up access keys

SJ GREEN
27TH January 2025

16

Log into the AWS Management Console on a web browser.

Log in as the root user.

Delete the AWS Access Key and Secret Access key for the

IAM user used for the demonstration.

It is more secure to use the Console to log in as root. You use

an MFA code that expires and a password which should be

memorised.

